Definition 1.1
Let G = ( V , E ) G = (V,E) G = ( V , E ) be a graph whose vertex-set V ( G ) = { v 1 , v 2 , . . . , v 3 } . V(G) = \{v_1,v_2,...,v_3\}. V ( G ) = { v 1 , v 2 , ... , v 3 } . The adjacency matrix of G G G is an n × n n \times n n × n Matrix A ( G ) A(G) A ( G ) whose entries a i j a_{ij} a ij are given by:
a i j = { 1 , if v i and v j are adjacent 0 , other \begin{equation} a_{ij} = \left\{ \begin{array}{lr} 1, \text{ if } v_{i} \text{ and } v_{j} \text{ are adjacent} \\ 0, \text{other} \end{array} \right. \end{equation} a ij = { 1 , if v i and v j are adjacent 0 , other
这个定义有如下几个性质:
对称: The adjacency matrix of G G G , A ( G ) A(G) A ( G ) , is symmetric , that is a i j = a j i a_{ij} = a_{ji} a ij = a ji 对角线上的点都为零: Since a simple graph has no loops, diagonal entry a i i = 0 , i = 1 , 2 , . . . , n a_{ii} = 0,i = 1,2,...,n a ii = 0 , i = 1 , 2 , ... , n 行/列数量为矩阵的degree: The i − i- i − th row or column sum equal to deg ( v i ) \deg(v_i) deg ( v i ) .Lemma 1.2
The number of walks of length l l l in G G G , from v i v_i v i to v j v_j v j , is the entry in position ( i , j ) (i,j) ( i , j ) of the matrix A ( G ) l A(G)^{l} A ( G ) l .
Proof of Lemma 1.2
Example 1.3 Example: A ( G ) 1 = A ( G ) A(G)^{1} = A(G) A ( G ) 1 = A ( G ) 表示第v i v_i v i 点只走一步至v j v_j v j 的路径个数 A ( G ) = [ 0 1 1 1 1 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 0 1 0 ] A(G) = \begin{bmatrix} &0& 1& 1& 1& 1& \\ &1& 0& 1& 0& 0& \\ &1& 1& 0& 1& 0& \\ &1& 0& 1& 0& 1& \\ &1& 0& 0& 1& 0& \\ \end{bmatrix} A ( G ) = 0 1 1 1 1 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 0 1 0
A ( G ) 2 = A ( G ) ⋅ A ( G ) A(G)^{2} = A(G) \cdot A(G) A ( G ) 2 = A ( G ) ⋅ A ( G ) 表示第v i v_i v i 点只走2步至v j v_j v j 的路径个数A ( G ) 2 = [ 4 1 2 2 1 1 2 1 2 1 2 1 3 1 2 2 2 1 3 1 1 1 2 1 2 ] A(G)^{2} = \begin{bmatrix} &4& 1& 2& 2& 1& \\ &1& 2& 1& 2& 1& \\ &2& 1& 3& 1& 2& \\ &2& 2& 1& 3& 1& \\ &1& 1& 2& 1& 2& \\ \end{bmatrix} A ( G ) 2 = 4 1 2 2 1 1 2 1 2 1 2 1 3 1 2 2 2 1 3 1 1 1 2 1 2
There are 4 walks from v 1 v_1 v 1 to v 5 v_5 v 5
v 1 → v 2 → v 3 → v 4 → v 5 v_1 \to v_2 \to v_3 \to v_4 \to v_5 v 1 → v 2 → v 3 → v 4 → v 5
Definition 1.4
The spectrue of a square matrix M M M is the set of eigenvalue(特征值) of M M M , together with their multiplicities(数量) If the distinct eigenvalue of M M M are μ 1 , μ 2 , ⋯ , μ k \mu_1,\mu_2,\cdots,\mu_k μ 1 , μ 2 , ⋯ , μ k ,and the multiplicities are m ( μ 1 ) , m ( μ 2 ) , ⋯ , m ( μ k ) m(\mu_1),m(\mu_2),\cdots,m(\mu_k) m ( μ 1 ) , m ( μ 2 ) , ⋯ , m ( μ k ) , then we write Spec ( M ) = ( μ 1 μ 2 ⋯ μ k m ( μ 1 ) m ( μ 2 ) ⋯ m ( μ k ) ) \text{Spec}(M) = \begin{pmatrix} \mu_1 &\mu_2 &\cdots &\mu_k \\ m(\mu_1) &m(\mu_2) &\cdots &m(\mu_k) \end{pmatrix} Spec ( M ) = ( μ 1 m ( μ 1 ) μ 2 m ( μ 2 ) ⋯ ⋯ μ k m ( μ k ) )
Example 1.5
The complete graph has adjacency matrix
A ( K n ) = ( 0 1 ⋯ 1 1 0 ⋯ ⋮ ⋮ ⋱ ⋱ 1 0 ⋯ 1 1 ) n × n A(K_n) = \begin{pmatrix} 0 &1 &\cdots &1\\ 1 &0 &\cdots &\vdots\\ \vdots &\ddots &\ddots &1\\ 0 &\cdots &1 &1\\ \end{pmatrix}_{n\times n} A ( K n ) = 0 1 ⋮ 0 1 0 ⋱ ⋯ ⋯ ⋯ ⋱ 1 1 ⋮ 1 1 n × n
Consider the
J n = I n + A ( K n ) = ( 1 1 ⋯ 1 1 1 ⋯ ⋱ ⋮ 1 ⋯ 1 1 ⋯ 1 1 ) n × n J_n = I_n + A(K_n) = \begin{pmatrix} 1 &1 &\cdots &1\\ 1 &1 &\cdots &\ddots\\ \vdots &1 &\cdots &1\\ 1 &\cdots &1 &1\\ \end{pmatrix}_{n\times n} J n = I n + A ( K n ) = 1 1 ⋮ 1 1 1 1 ⋯ ⋯ ⋯ ⋯ 1 1 ⋱ 1 1 n × n
Since the rank of J n = 1 J_n = 1 J n = 1 (对于可对角化的矩阵来说,矩阵的非零特征值的数量等于矩阵的秩), 0 0 0 is an eigenvalue of j n j_n j n with multiplicity of n − 1 n-1 n − 1 .
Since
μ 1 + μ 2 + ⋯ + μ n = Tr ( J n ) = n \mu_1 + \mu_2 + \cdots + \mu_n = \text{ Tr }(J_n) = n μ 1 + μ 2 + ⋯ + μ n = Tr ( J n ) = n
the last eigenvalue μ n = n \mu_n = n μ n = n .
So, the trace of matrix: The sum of the diagonal elements of matrix A A A is called the trace of matrix and is denoted by tr ( A ) \text{tr}(A) tr ( A ) .
Spec ( J n ) = ( n 0 1 n − 1 ) \text{ Spec }(J_n) = \begin{pmatrix} n &0\\ 1 &n-1 \end{pmatrix} Spec ( J n ) = ( n 1 0 n − 1 )
Hence, J n J_n J n 与 A ( K n ) A(K_n) A ( K n ) 的区别就是差了一个 I I I 。因此只需讲 J n J_n J n 的特征值 -1,即为 A ( K n ) A(K_n) A ( K n ) 的特征值.
Spec ( A ( K n ) ) = ( n − 1 − 1 1 n − 1 ) \text{Spec}(A(K_n)) = \begin{pmatrix} n-1 & -1\\ 1 &n-1 \end{pmatrix} Spec ( A ( K n )) = ( n − 1 1 − 1 n − 1 )
注
Let G = ( V , E ) G = (V,E) G = ( V , E ) be a graph.
If ∅ ≠ U ⊆ V \emptyset \neq U \subseteq V ∅ = U ⊆ V , the subgraph of G G G induced by U U U is the subgraph whose vertex set is U U U and which contains all edges { x , y } \{x,y\} { x , y } (from G G G ) for x , y ∈ U x,y\in U x , y ∈ U , we denote this subgraph by [ U ] [U] [ U ] .
contains all edges 是指包涵U U U 的所有边, U U U 是我们构造的字图vertex set 是指U U U 的点的集合关于 subgraph 的理解主要看下面这个例子
Example 1.6
Example of Subgraph (a) is what we denoted G = ( V , E ) G = (V,E) G = ( V , E ) in above.
In (b) and (c) are the subgraphs and induced subgraphs of G G G , where (c) is disconnected.
G 1 = [ U 1 ] = { b , c , d , e } G_1 = [U_1] = \{b, c, d, e\} G 1 = [ U 1 ] = { b , c , d , e } and G 2 = [ U 2 ] = { a , d , f , e } G_2 = [U_2] = \{a, d, f, e\} G 2 = [ U 2 ] = { a , d , f , e } .
In (d) is the subgraph but not an induced subgraph of G G G , because the edge { c , e } \{c, e\} { c , e } is not present.
(d): G 3 = [ u 3 ] = { a , b , c , e , f } G_3 = [u_3] = \{a, b, c, e, f\} G 3 = [ u 3 ] = { a , b , c , e , f }
这一部分主要是介绍关于图的特征多项式。
针对每一张图,我们都可以写出一条特征多项式。
因此这部分也是最重要 的一章,因为往后的很多性质都与其特征多项式有或大或小的关系。
Theorem 1.7
The characterristic polynomial of A ( G ) A(G) A ( G ) :
p ( A ( G ) , μ ) = d e t ( μ I n − A ( G ) ) = μ n + c 1 μ n − 1 + c 2 μ n − 2 + c 3 μ n − 3 + ⋯ + c n \begin{equation} p(A(G),\mu) = det(\mu I_{n} - A(G)) = \mu^{n} + c_1 \mu^{n-1} + c_2\mu^{n-2} + c_3\mu^{n-3} + \cdots + c_n \end{equation} p ( A ( G ) , μ ) = d e t ( μ I n − A ( G )) = μ n + c 1 μ n − 1 + c 2 μ n − 2 + c 3 μ n − 3 + ⋯ + c n
c 1 c_1 c 1 = 0;− c 2 -c_2 − c 2 is the number of edges of G G G ;− c 3 -c_3 − c 3 is twice the number of triangles in G G G ;c n = ( − 1 ) n det ( A ( G ) ) c_n = (-1)^{n}\det(A(G)) c n = ( − 1 ) n det ( A ( G )) , 这一条性质只能用在 c n c_n c n 为多项式的最后一项的时候,对于 c 4 ∼ c n − 1 c_4 \thicksim c_{n-1} c 4 ∼ c n − 1 请使用 Theorem 1.18记住,characteristics polynomial 的本质是 determinate
记住,characteristics polynomial 的本质是 determinate
记住,characteristics polynomial 的本质是 determinate
Theorem 1.8
The graph G G G with n n n vertices and μ 1 , μ 2 , ⋯ , μ n \mu_1, \mu_2, \cdots, \mu_n μ 1 , μ 2 , ⋯ , μ n be n n n eigenvalues of A ( G ) A(G) A ( G ) . Then,
∑ i = 1 n μ i 2 = 2 ∣ E ( G ) ∣ \sum_{i=1}^{n}\mu_{i}^{2} = 2|E(G)| ∑ i = 1 n μ i 2 = 2∣ E ( G ) ∣ where ∣ E ( G ) ∣ |E(G)| ∣ E ( G ) ∣ is the number of edges in G G G .
∑ i = 1 n μ i 3 = 6 × the number of triangles in G \sum_{i=1}^{n} \mu_{i}^{3} = 6 \times \text{the number of triangles in G} ∑ i = 1 n μ i 3 = 6 × the number of triangles in G
因此,当我们在后面可以得知 μ i \mu_i μ i 的数量,需要求 μ \mu μ ,我们可以使用 1 来列方程解 μ \mu μ 的值
Theorem 1.12
Suppose v i v_i v i is a vertex of degree 1 of G G G , and v j v_j v j is v i v_i v i 's neighbor.
Let G i = G − v i G_i = G - v_i G i = G − v i , and G i , j = G − { v i , v j } G_{i,j} = G-\{v_i,v_j\} G i , j = G − { v i , v j } ,then
p ( A ( G ) , μ ) = μ p ( A ( G i ) , μ ) − p ( A ( G i , j ) , μ ) \begin{equation} p(A(G),\mu) = \mu p(A(G_i),\mu) - p(A(G_{i,j}),\mu) \end{equation} p ( A ( G ) , μ ) = μ p ( A ( G i ) , μ ) − p ( A ( G i , j ) , μ )
Then, we can use the Example 1.13 to prove.
Example 1.13
这个定理的主要用途是:你任选一个点
Bipartite 也是 这一章中一个很重要的知识点,基本上会和 Characteristic Polynomial 相结合, 同时也在作业题里面有所展示。
Bipartite is not necessarily complete .
Lemma 1.9
If G G G is bipartite and μ \mu μ is non-zero eigenvalue of A ( G ) A(G) A ( G ) with multiplicity m m m , then − μ -\mu − μ is also an eigenvalue with multiplicity m
这个引理其实就是 Theorem 1.10 的 2 的内容,非零特征值会成对出现 且 数量相同 。
这个性质会在后面计算 Spec ( A ( G ) ) \text{Spec}(A(G)) Spec ( A ( G )) 的时候被多次用到。
Theorem 1.10
G G G is a graph with n n n vertices and μ 1 , μ 2 , ⋯ , μ n \mu_1, \mu_2, \cdots, \mu_n μ 1 , μ 2 , ⋯ , μ n be the eigenvalues of A ( G ) A(G) A ( G ) . Then, the following properties are equivalent:
G G G is bipartite.
The non-zero eigenvalues μ i , − μ i \mu_i, -\mu_i μ i , − μ i of A ( G ) A(G) A ( G ) occur in pairs with the same multiplicity.
p ( A ( G ) , μ ) = { μ n + c 2 μ n − 2 + c 4 μ n − 4 + ⋯ + c n − 1 μ if n is odd μ n + c 2 μ n − 2 + c 4 μ n − 4 + ⋯ + c n − 1 if n is even p(A(G),\mu) = \left\{\begin{array}{lr} \mu^{n} + c_2\mu^{n-2} + c_4 \mu^{n-4}+ \cdots + c_{n-1}\mu \quad \text{ if }n \text{ is odd}\\ \mu^{n} + c_2\mu^{n-2} + c_4 \mu^{n-4}+ \cdots + c_{n-1} \qquad \text{if }n \text{ is even} \end{array}\right. p ( A ( G ) , μ ) = { μ n + c 2 μ n − 2 + c 4 μ n − 4 + ⋯ + c n − 1 μ if n is odd μ n + c 2 μ n − 2 + c 4 μ n − 4 + ⋯ + c n − 1 if n is even
∑ i = 1 n μ i 2 t − 1 = 0 \sum_{i=1}^{n}\mu_{i}^{2t-1} = 0 ∑ i = 1 n μ i 2 t − 1 = 0 for any positive integer t t t .
Example 1.11
The vretices of complete bipartite graph K a , b K_{a,b} K a , b are labelled in { 1 , ⋯ , a } \{1, \cdots, a\} { 1 , ⋯ , a } and { a + 1 , ⋯ , a + b } \{a+1, \cdots, a+b \} { a + 1 , ⋯ , a + b } which are 2 sets of non-adjacent vertices.
Then, the adjacency matrix is
A ( K a , b ) = ( 0 a , a J a , b J b , a ) b , b ) ( a + b ) × ( a + b ) A(K_{a,b}) = \begin{pmatrix} 0_{a,a}& J_{a,b} \\ J_{b,a}& )_{b,b} \end{pmatrix}_{(a+b)\times (a+b)} A ( K a , b ) = ( 0 a , a J b , a J a , b ) b , b ) ( a + b ) × ( a + b )
where J m , n J_{m,n} J m , n is
J m × n = ( 1 1 ⋯ 1 ⋮ ⋮ ⋮ ⋮ 1 1 ⋯ 1 ) m × n J_{m\times n} = \begin{pmatrix} 1& 1& \cdots& 1\\ \vdots& \vdots& \vdots& \vdots\\ 1& 1& \cdots& 1\\ \end{pmatrix}_{m \times n} J m × n = 1 ⋮ 1 1 ⋮ 1 ⋯ ⋮ ⋯ 1 ⋮ 1 m × n
Then, there have some consequence for complete bipartite graph K a , b K_{a,b} K a , b
The matrix A ( k a , b ) A(k_{a,b}) A ( k a , b ) has just two linearly independent rows, and its rank is 2 0 is an eigencalue of A ( K a , b ) A(K_{a,b}) A ( K a , b ) with multiplicity a + b − 2 a + b -2 a + b − 2 The Characteristic Polynomial is the form μ a + b − 2 ( μ 2 + c 2 ) \mu^{a+b-2}(\mu^2 + c_2) μ a + b − 2 ( μ 2 + c 2 )
werere − c 2 = a b -c_2 = ab − c 2 = ab is equal to the number of edhes of K a , b K_{a,b} K a , b
Hence,
Spec ( K a , b ) = ( a b 0 − a b 1 a + b − 2 1 ) \text{Spec}(K_{a,b}) = \begin{pmatrix} \sqrt{ab}& 0& -\sqrt{ab}\\ 1& a+b-2& 1& \end{pmatrix} Spec ( K a , b ) = ( ab 1 0 a + b − 2 − ab 1 )