IMPORTANT
The algebraic connectivity of G G G is the second smallest eigenvalue, λ 2 ( G ) \lambda_2(G) λ 2 ( G ) , of the Laplacian matrix L ( G ) L(G) L ( G ) . We denote the algebraic connectivty of G G G by a ( G ) a(G) a ( G ) .
λ 2 ( G ) = a ( G ) \lambda_2(G) = a(G) λ 2 ( G ) = a ( G ) λ 2 ( G ) \lambda_2(G) λ 2 ( G ) is the second smallest eigenvalues.IMPORTANT
If G 1 , G 2 G_1, G_2 G 1 , G 2 are edge-disjoint grpah with the same set of vertices then
a ( G 1 ) + a ( G 2 ) ≤ a ( G 1 ∪ G 2 ) \begin{equation} a(G_1) + a(G_2) \leq a(G_1 \cup G_2) \end{equation} a ( G 1 ) + a ( G 2 ) ≤ a ( G 1 ∪ G 2 )
Corollargy
The function a ( G ) a(G) a ( G ) is non-decreasing for graphs with the same set of vertices, if
E ( G 1 ) ⊆ E ( G 2 ) and V ( G 1 ) = V ( G 2 ) \begin{equation} E(G_1) \subseteq E(G_2) \text{ and } V(G_1) = V(G_2) \end{equation} E ( G 1 ) ⊆ E ( G 2 ) and V ( G 1 ) = V ( G 2 )
Then,
a ( G 1 ) ≤ a ( G 2 ) \begin{equation} a(G_1) \leq a(G_2) \end{equation} a ( G 1 ) ≤ a ( G 2 )
Example:
G ⊂ K n − e ⇒ G is the subgraph of K n − e ⇓ a ( G ) ≤ a ( K n − e ) \begin{equation} \begin{array}{lr} G \subset K_n - e & \Rightarrow \text{G is the subgraph of } K_n-e \\ \qquad \Downarrow &\\ a(G) \leq a(K_n - e) & \end{array} \end{equation} G ⊂ K n − e ⇓ a ( G ) ≤ a ( K n − e ) ⇒ G is the subgraph of K n − e
IMPORTANT
Let G G G be a graph and let H H H be a graph obtained from G by removing K K K vertices G G G and all edges.
Then,
a ( H ) ≥ a ( G ) − K \begin{equation} a(H) \geq a(G) - K \end{equation} a ( H ) ≥ a ( G ) − K
Corollary
Let G be a graph with vertex set V ( G ) V(G) V ( G ) . Let V ( G ) = V 1 ∪ V 2 V(G) = V_1 \cup V_2 V ( G ) = V 1 ∪ V 2 are disjoint.
For i = 1 , 2 i = 1,2 i = 1 , 2 , let G i G_i G i be the subgraph of induced by V i V_i V i . Then,
a ( G ) ≤ min { a ( G 1 ) + ∣ V 2 ∣ , a ( G ) + ∣ V 1 ∣ } ⇐ 两个图拆开后的结论 \begin{equation} a(G) \leq \min\{a(G_1) + |V_2|, a(G)+|V_1|\} \Leftarrow \text{ 两个图拆开后的结论} \end{equation} a ( G ) ≤ min { a ( G 1 ) + ∣ V 2 ∣ , a ( G ) + ∣ V 1 ∣ } ⇐ 两个图拆开后的结论
Definition
A connected graph G G G , a vertex v v v is a cut vertex of G G G . If G − v G-v G − v is connected. A vertex cut is a set of vertices U U U
s.t.
G − U is disconnected \begin{equation} G-U \text{ is disconnected} \end{equation} G − U is disconnected
这个定义在讨论,当我 cut 掉几个点,图可以从 Connected ⇒ Disconnected \text{Connected } \Rightarrow \text{ Disconnected} Connected ⇒ Disconnected
IMPORTANT
If the cardinality of vertieces in a vertex cut U U U of a graph G G G is the minimum number of vertices required to be removed from G G G (along with its incident edges) to render G G G disconnected, we say that U U U is a minimal vertex cut. This cardinality is known as the vertex connectivity of G G G and is denoted by v ( G ) v(G) v ( G ) .
vertex conectivity : 对于G G G , 去掉的点成为两个子图的数量,denoted by v ( G ) v(G) v ( G ) IMPORTANT
G G G is a non-complete and connected graph on n n n vertices.
Then, a ( G ) ≤ v ( G ) a(G) \leq v(G) a ( G ) ≤ v ( G ) if and only if G 1 ∪ G 2 G_1 \cup G_2 G 1 ∪ G 2 . Where,
G 1 G_1 G 1 is a disconnected graph on n − v ( G ) n-v(G) n − v ( G ) verticesG 2 G_2 G 2 is a graph on v ( G ) v(G) v ( G ) vertices with a ( G ) ≥ 2 v ( G ) − n a(G) \geq 2v(G) - n a ( G ) ≥ 2 v ( G ) − n KEY POINT - Star graph
A star S n S_n S n on n ( ≥ 2 ) n(\geq 2) n ( ≥ 2 ) vertices is a tree consisting of one vertex that is adjacent to the remaining n − 1 n-1 n − 1 vertices, i.e. S n = K 1 , n − 1 S_n = K_{1,n-1} S n = K 1 , n − 1 .
The Laplacian eigenvalues of S n S_n S n are 0 , 1 , . . . , 1 , n 0,1,...,1,n 0 , 1 , ... , 1 , n , where the number of 1 1 1 is n − 1 n-1 n − 1
For S 4 : 0 , 1 , 1 , 4 S_4: 0,1,1,4 S 4 : 0 , 1 , 1 , 4 For S 5 : 0 , 1 , 1 , 1 , 5 S_5: 0,1,1,1,5 S 5 : 0 , 1 , 1 , 1 , 5 For S 6 : 0 , 1 , 1 , 1 , 1 , 6 S_6: 0,1,1,1,1,6 S 6 : 0 , 1 , 1 , 1 , 1 , 6 Corollary
Let T T T be a tree on n ≥ 3 n\geq 3 n ≥ 3 vertices. Then,a ( T ) ≤ 1 a(T)\leq 1 a ( T ) ≤ 1 if and only if T T T is a star graph
KEY POINT - Pendant, Quasipendant
A vertex in a graoh G G G of degree one is called a pendant vertices .
p ( G ) p(G) p ( G ) denotes the number of pendant vertices .A vertex in G G G is quasipendant if it is adjacent to a pendant vertex.
q ( G ) q(G) q ( G ) denotes the number of quasipendant m G ( λ ) m_{G}(\lambda) m G ( λ ) denotes the multiplicity of the eigenvalue λ \lambda λ as an eigenvalue of Laplacian matrix of G G G .
Relationship between Pendant, Quasipendant, and the number of eigenvalue equal 1
Let L ( G ) L(G) L ( G ) be the Laplcian matrix for a graph G G G . Then,
m G ( 1 ) ≥ p ( G ) − q ( G ) \begin{equation} m_{G}(1) \geq p(G) - q(G) \end{equation} m G ( 1 ) ≥ p ( G ) − q ( G )
KEY POINT
Let G G G be a graph with p p p pendant vertices, and let R R R be the set of inner vertices of G G G . Then,
S ( G ) = m L [ R ] ( 1 ) = m A ( 1 ) S(G) = m_{L[R]}(1) = m_{A}(1) S ( G ) = m L [ R ] ( 1 ) = m A ( 1 )
S ( G ) = m G ( 1 ) − p ( G ) + q ( G ) S(G) = m_{G}(1) - p(G) + q(G) S ( G ) = m G ( 1 ) − p ( G ) + q ( G )
A A A 矩阵是 inner vertieces 与 inner vertices 构成的矩阵
L ( G ) = [ A X 0 r , p X Q C 0 r , p C T I p ] \begin{equation} L(G) = \begin{bmatrix} A &X &0_{r,p} \\ X &Q &C \\ 0_{r,p} &C^{T} &I_{p} \\ \end{bmatrix} \end{equation} L ( G ) = A X 0 r , p X Q C T 0 r , p C I p
KEY POINT
Let G G G be a graph with n n n vertices. Denote m G ( I ) m_{G}(I) m G ( I ) the number of rigenvalue of L ( G ) L(G) L ( G ) , multiplicities included, belonging to the interval I I I . Then m G [ 0 , 1 ] ≥ p ( G ) ≤ m G [ 1 , + ∞ ] m_{G}[0,1] \geq p(G) \leq m_{G}[1, +\infty] m G [ 0 , 1 ] ≥ p ( G ) ≤ m G [ 1 , + ∞ ]
Theorem
Let G G G be a graph with n n n vertices and G u v P 3 GuvP_3 G uv P 3 be the graph obtained from G + P 3 G+P_3 G + P 3 by adding an edge joining the vertex u u u of G G G to a pendant vertex v v v of P 3 P_3 P 3 . Then,
m G ( 1 ) = m G u v P 3 ( 1 ) \begin{equation} m_G(1) = m_{GuvP_3}(1) \end{equation} m G ( 1 ) = m G uv P 3 ( 1 )
Definition
Denote by ξ ( G ) \xi(G) ξ ( G ) the set of eigenvalues of L ( G ) L(G) L ( G ) corresponding to a ( G ) a(G) a ( G ) .
The element of ξ ( G ) \xi(G) ξ ( G ) is called characteristic valuations of G G G .
Characteristic valuation
Let T = ( V , E ) T = (V,E) T = ( V , E ) be a tree on n ≥ 4 n\geq 4 n ≥ 4 vertices. Suppose there is a characteristic valuation x 2 T ∈ ξ ( T ) x_2^T \in \xi(T) x 2 T ∈ ξ ( T ) and a pendant vertex v ∈ V ( G ) v \in V(G) v ∈ V ( G ) such that x 2 T ( v ) = 0 x^T_2(v)=0 x 2 T ( v ) = 0 . Let u ∈ V ( G ) u \in V(G) u ∈ V ( G ) be the quasipendant vertex adjacent to v v v . Denote by T 1 = ( V , E ) T_1 = (V,E) T 1 = ( V , E ) the subgraph obtained from V V V and { u , v } \{u,v\} { u , v } from E.
Then,
(a) x 2 T ( u ) = 0 (b) a ( T 1 ) = a ( T ) (c) x 2 T ∈ ξ ( T ) , where x 2 T is the restriction of x 2 T to V 1 \begin{equation} \begin{array}{lr} \text{(a)} \quad x_2^T(u) = 0 &\\ \\ \text{(b)} \quad a(T_1) = a(T) &\\ \\ \text{(c)} \quad x^T_2 \in \xi(T),\text{ where }x^T_2 \text{ is the restriction of } x_2^T \text{ to } V_1 \end{array} \end{equation} (a) x 2 T ( u ) = 0 (b) a ( T 1 ) = a ( T ) (c) x 2 T ∈ ξ ( T ) , where x 2 T is the restriction of x 2 T to V 1